Tuesday, August 21, 2007

Volatile organic compounds (VOCs) are organic chemical compounds that have high enough vapour pressures under normal conditions to significantly vaporize and enter the atmosphere. (The term VOC is also occasionally used as an abbreviation, especially in biological contexts, for "volatile organic carbon".) A wide range of carbon-based molecules, such as aldehydes, ketones, and hydrocarbons are VOC's. The term often is used in a legal or regulatory context and in such cases the precise definition is a matter of law. These definitions can be contradictory and may contain "loopholes"; e.g. exceptions, exemptions, and exclusions. Others believe the concept that a volatile organic compound is any organic that participates in a photoreaction, as found in the EPA's definition, is very broad and vague. Organics that are not volatile, as described above, can fall into that definition. The term may refer both to well characterized organic compounds and to mixtures of variable composition. Most often the definition used is one from the United States Environmental Protection Agency (see below).

Sources of VOCs
VOCs are sometimes accidentally released into the environment, where they can damage soil and groundwater. Vapours of VOCs escaping into the air contribute to air pollution.
VOCs are an important outdoor air pollutant. In this field they are often divided into the separate categories of methane (CH4) and non-methane (NMVOCs). Methane is an extremely efficient greenhouse gas which contributes to enhanced global warming. Other hydrocarbon VOCs are also significant greenhouse gases via their role in creating ozone and in prolonging the life of methane in the atmosphere, although the effect varies depending on local air quality. Within the NMVOCs, the aromatic compounds benzene, toluene and xylene are suspected carcinogens and may lead to leukaemia through prolonged exposure. 1,3-butadiene is another dangerous compound which is often associated with industrial uses.
Some VOCs also react with nitrogen oxides in the air in the presence of sunlight to form ozone. Although ozone is beneficial in the upper atmosphere because it absorbs UV thus protecting humans, plants, and animals from exposure to dangerous solar radiation, it poses a health threat in the lower atmosphere by causing respiratory problems. In addition high concentrations of low level ozone can damage crops and buildings.

Environmental effects
Many VOCs found around the house, such as paint strippers and wood preservatives, contribute to sick building syndrome because of their high vapour pressure. VOC's are often used in paint, carpet backing, plastics, and cosmetics. The United States Environmental Protection Agency (EPA) has found concentrations of VOCs in indoor air to be 2 to 5 times greater than in outdoor air. During certain activities indoor levels of VOCs may reach 1,000 times that of the outside air. Not all organic compounds are volatile; many plastics (polymers) and other large molecules may not have significant vapor pressure at normal temperatures.
Air quality with reference to Volatile Organic Compund Emission.

Contribution to indoor air pollution
There are a number of different ways to collectively refer to those chemical compounds that participate in photochemical reactions. That is, those that react with other pollutants, in the presence of sunlight, to form tropospheric ozone.
Some of the more common terms are:
While all these terms are used, it is not always clear which pollutants are included in each term. The term "VOC" has the advantage of having precise definitions codified by regulators such as the European Parliament and the US EPA.
Worldwide, legal definitions of the term "VOC" are in many respects, more a matter of policy than a matter of science. For example, because the US EPA Code of Federal Regulations (CFR) has characterized a compound as having "negligible photochemical reactivity" it does not necessarily imply that it is, at any particular time, less reactive than those compounds which are not on the list. Since first establishing the list of exempt compounds in 1977, the EPA has added several to the list, and frequently has several petitions undergoing review.
The traditional US standard to determine if a compound is a non-VOC is to compare its reactivity to that of ethane, which was the least reactive compound on the original list. Unfortunately, this is a very difficult comparison to make as it is frequently impossible to duplicate the real-world conditions in a laboratory. To complicate the issue, typical real-world conditions are different from day to day and from place to place. However, there is ongoing study on the use of a compound's reactivity as a better tool for pollution control regulation than the "is or isn't" approach currently in use. (See Maximum Incremental Reactivity, MIR [1].)

NMHC — Non-Methane Hydrocarbons
NMOG — Non-Methane Organic Gases
NMVOC — Non-Methane Volatile Organic Compounds
ROG — Reactive Organic Gases
SVOC — Semi-Volatile Organic Compounds
TOG — Total Organic Gases
TVOC — Total Volatile Organic Compounds
VOC — Volatile Organic Compounds Terminology and legal definitions
Under European law, the definition of "VOC" is based on evaporation into the atmosphere, rather than reactivity. For example European Union Directive 2004/42/CE which covers VOC emissions from paints and varnishes defines a VOC as any organic compound having an initial boiling point less than or equal to 250°C measured at a standard atmospheric pressure of 101.3 kPa. Directive 94/63/EC which regulates VOC emissions from storage and distribution of petrol simply defines 'vapours` as any gaseous compound which evaporates from petrol.

Volatile organic compound UK classification
40 CFR Part 51.100(s) gives this definition as follows:
Volatile organic compounds (VOC) means any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions.
(1) This includes any such organic compound other than the following, which have been determined to have negligible photochemical reactivity: methane; ethane; methylene chloride (dichloromethane); 1,1,1-trichloroethane (methyl chloroform); 1,1,2-trichloro-1,2,2-trifluoroethane (CFC–113); trichlorofluoromethane (CFC–11); dichlorodifluoromethane (CFC–12); chlorodifluoromethane (HCFC–22); trifluoromethane (HFC–23); 1,2-dichloro-1,1,2,2-tetrafluoroethane (CFC–114); chloropentafluoroethane (CFC–115); 1,1,1-trifluoro-2,2-dichloroethane (HCFC–123); 1,1,1,2-tetrafluoroethane (HFC–134a); 1,1-dichloro-1-fluoroethane (HCFC–141b); 1-chloro-1,1-difluoroethane (HCFC–142b); 2-chloro-1,1,1,2-tetrafluoroethane (HCFC–124); pentafluoroethane (HFC–125); 1,1,2,2-tetrafluoroethane (HFC–134); 1,1,1-trifluoroethane (HFC–143a); 1,1-difluoroethane (HFC–152a); parachlorobenzotrifluoride (PCBTF); cyclic, branched, or linear completely methylated siloxanes; acetone; perchloroethylene (tetrachloroethylene); 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC–225ca); 1,3-dichloro-1,1,2,2,3-pentafluoropropane (HCFC–225cb); 1,1,1,2,3,4,4,5,5,5-decafluoropentane (HFC 43–10mee); difluoromethane (HFC–32); ethylfluoride (HFC–161); 1,1,1,3,3,3-hexafluoropropane (HFC–236fa); 1,1,2,2,3-pentafluoropropane (HFC–245ca); 1,1,2,3,3-pentafluoropropane (HFC–245ea); 1,1,1,2,3-pentafluoropropane (HFC–245eb); 1,1,1,3,3-pentafluoropropane (HFC–245fa); 1,1,1,2,3,3-hexafluoropropane (HFC–236ea); 1,1,1,3,3-pentafluorobutane (HFC–365mfc); chlorofluoromethane (HCFC–31); 1- chloro-1-fluoroethane (HCFC–151a); 1,2-dichloro-1,1,2-trifluoroethane (HCFC–123a); 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxy-butane (C4F9OCH3 or HFE-7100); 2-(difluoromethoxymethyl)-1,1,1,2,3,3,3-heptafluoropropane ((CF3)2CFCF2OCH3); 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane (C4F9OC2H5 or HFE-7200); 2-(ethoxydifluoromethyl)-1,1,1,2,3,3,3-heptafluoropropane ((CF3)2CFCF2OC2H5); methyl acetate; 1,1,1,2,2,3,3-heptafluoro-3-methoxy-propane (n-C3F7OCH3 or HFE–7000); 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-(trifluoromethyl) hexane (HFE–7500); 1,1,1,2,3,3,3-heptafluoropropane (HFC 227ea); methyl formate (HCOOCH3); and perfluorocarbon compounds which fall into these classes:
(i) Cyclic, branched, or linear, completely fluorinated alkanes;
(ii) Cyclic, branched, or linear, completely fluorinated ethers with no unsaturations;
(iii) Cyclic, branched, or linear, completely fluorinated tertiary amines with no unsaturations; and
(iv) Sulfur containing perfluorocarbons with no unsaturations and with sulfur bonds only to carbon and fluorine.
Refer to the current CFR for up-to-date definition [3].

Other relevance

Volatility (physics)
Dutch standards
Organic compound
Photochemical smog
Criteria air contaminants

No comments: